Number spiral diagonals
Contents
Description
Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows:
21 22 23 24 25 20 7 8 9 10 19 6 1 2 11 18 5 4 3 12 17 16 15 14 13
It can be verified that the sum of the numbers on the diagonals is 101.
What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way?
Solution
从上面的图中找到每个斜边中的序列数字可以推导出下列公式:
$$\begin{array}{rll} a_n &= (9, 25, 49, 81, 121, …) &= 4n^2 + 4n + 1 \\ b_n &= (5, 17, 37, 65, 101, …) &= 4n^2 + 1 \\ c_n &= (3, 13, 31, 57, 91, …) &= 4n^2 - 2n+1 \\ d_n &= (7, 21,43, 73, 111, …) &= 4n^2 + 2n + 1 \end{array}$$
汇总结果:
$$\begin{array}{rl} s_n &= 1+\sum\limits_{i=1}^n (a_i + b_i + c_i + d_i) \\ &= 1+\sum\limits_{i=1}^n (16i^2 + 4i + 4) \\ &= 1+16\sum\limits_{i=1}^ni^2 + 4\sum\limits_{i=1}^ni + \sum\limits_{i=1}^n4 \\ &= 1+\frac{8}{3}n(n+1)(2n+1) + 2n(n+1) + 4n \\ &= 1+\frac{2}{3}n(8n^2+15n+13) \end{array}$$
|
|
another solution
|
|
Summary
- 找规律获取每个sequence的逻辑
- 注意中间点是1